On Evolutionary Optimization of Large Problems Using Small Populations
نویسندگان
چکیده
Small populations are very desirable for reducing the required computational resources in evolutionary optimization of complex real-world problems. Unfortunately, the search performance of small populations often reduces dramatically in a large search space. To addresses this problem, a method to find an optimal search dimension for small populations is suggested in this paper. The basic idea is that the evolutionary algorithm starts with a small search dimension and then the search dimension is increased during the optimization. The search dimension will continue to increase if an increase in the search dimension improves the search performance. Otherwise, the search dimension will be decreased and then kept constant. Through empirical studies on a test problem with an infinite search dimension, we show that the proposed algorithm is able to find the search dimension that is the most efficient for the given population size.
منابع مشابه
An Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm
In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...
متن کاملOPTIMAL DESIGN OF REINFORCED CONCRETE ONE-WAY RIBBED SLABS USING IMPROVED TIME EVOLUTIONARY OPTIMIZATION
In this paper, a new robust metaheuristic optimization algorithm called improved time evolutionary optimization (ITEO) is applied to design reinforced concrete one-way ribbed slabs. Geometric and strength characteristics of concrete slabs are considered as design variables. The optimal design is such that in addition to achieving the minimum cost, all design constraints are satisfied under Amer...
متن کاملContribution to the molecular systematics of the genus Capoeta from the south Caspian Sea basin using mitochondrial cytochrome b sequences (Teleostei: Cyprinidae)
Traditionally, Capoeta populations from the southern Caspian Sea basin have been considered as Capoeta capoeta gracilis. Study on the phylogenetic relationship of Capoeta species using mitochondrial cytochrome b gene sequences show that Capoeta population from the southern Caspian Sea basin is distinct species and receive well support (posterior probability of 100%). Based on the tree topologie...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملApproximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005